Tên bài báo:

A comparative study between popular statistical and machine learning methods for simulating volume of landslides
Tác giả:
Phạm Thái Bình
Tham gia cùng:
Tạp chí:
Catena
Năm xuất bản:
2017
Trang:
Từ trang 213 đến trang 226
Lĩnh vực:
Kỹ thuật xây dựng công trình giao thông
Phạm vi:
Quốc tế

Tóm tắt:

This study attempts to compare popular statistical methods (linear, logarithmic, quadratic, power and exponential functions) with machine learning methods (multi-layer perceptron (MLP), radial base function (RBF), adaptive neural-based fuzzy inference system (ANFIS) and support vector machine (SVM)) for simulating the volume of landslides based on their surface area (VL ~ AL) in the Kurdistan province, Iran. Performances of the models were validated using some commonly error functions including the Adjusted R2, F-test and AIC (Akaike Information Criteria). The results showed that the power model demonstrates the best performance compared to other statistical methods whereas the ANFIS model outperforms other machine learning approaches. Furthermore, the comparative results showed that machine learning methods indicate better performances than simple statistical methods for simulating the volume of landslides in the study area. In practice, the outputs of this research can help managers and investigators decrease the cost of field surveys and measurements of volumes of landslides in landslide hazard management projects.

Từ khóa:

Landslide Simple statistical models Machine learning algorithms ANFIS Kurdistan province Iran
Thông tin tác giả
Phạm Thái Bình

Phạm Thái Bình

Thạc sĩ kỹ thuật

Lý lịch khoa học