Tên bài báo:
Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods- Tác giả:
- Phạm Thái Bình
- Tham gia cùng:
- Tạp chí:
- Science of The Total Environment
- Năm xuất bản:
- 2019
- Trang:
- Từ trang 1038 đến trang 1054
- Lĩnh vực:
- Kỹ thuật xây dựng công trình giao thông
- Phạm vi:
- Quốc tế
Tóm tắt:
The main objective of the present study was to provide a novel methodological approach forflashflood susceptibility modeling based on a feature selection method (FSM) and tree based ensemble methods. The FSM, used a fuzzy rule based algorithm FURIA, as attribute evaluator, whereas GA were used as the search method, in order to obtain optimal set of variables used inflood susceptibility modeling assessments. The novel FURIA-GA was combined with LogitBoost, Bagging and AdaBoost ensemble algorithms. The performance of the developed methodology was evaluated at the Bao Yen district and the Bac Ha district of Lao Cai Province in the Northeast region of Vietnam. For the case study, 654floods and twelve geo-environmental variables were used. The predictive performance of each model was estimated through the calculation of the classification accuracy, the sensitivity, the specificity, the success and predictive rate curve and the area under the curves (AUC). The FURIA-GA FSM compared to a conventional rule based method gave more accurate predictive results. Also, the FURIA-GA based models, presented higher learning and predictive ability compared to the ensemble models that had not undergone a FSM. Based on the predictive classification accuracy, FURIA-GA-Bagging (93.37%) outperformed FURIAGA-LogitBoost (92.35%) and FURIA-GA-AdaBoost (89.03%). FURIA-GA-Bagging showed also the highest sensitivity (96.94%) and specificity (89.80%). On the other hand, the FURIA-GA-LogitBoost showed the lowest percentage in very high susceptible zone and the highest relativeflash-flood density, whereas the FURIA-GA-AdaBoost achieved the highest prediction AUC value (0.9740), based on the prediction rate curve, followed by FURIA-GABagging (0.9566), and FURIA-GA-LogitBoost (0.8955). It can be concluded that the usage of different statistical metrics, provides different outcomes concerning the best prediction model, which mainly could be attributed to sites specific settings. The proposed models could be considered as a novel alternative investigation tools appropriate forflashflood susceptibility mapping.