Tên bài báo:

A comparative assessment of flood susceptibility modeling using MultiCriteria Decision-Making Analysis and Machine Learning Methods
Tác giả:
Lý Hải Bằng
Tham gia cùng:
Tạp chí:
Journal of Hydrology
Năm xuất bản:
Từ trang 311 đến trang 323
Lĩnh vực:
Kỹ thuật xây dựng công trình giao thông
Phạm vi:
Quốc tế

Tóm tắt:

Floods around the world are having devastating effects on human life and property. In this paper, three Multi-Criteria Decision-Making (MCDM) analysis techniques (VIKOR, TOPSIS and SAW), along with two machine learning methods (NBT and NB), were tested for their ability to model flood susceptibility in one of China’s most flood-prone areas, the Ningdu Catchment. Twelve flood conditioning factors were used as input parameters: Normalized Difference Vegetation Index (NDVI), lithology, land use, distance from river, curvature, altitude, Stream Transport Index (STI), Topographic Wetness Index (TWI), Stream Power Index (SPI), soil type, slope and rainfall. The predictive capacity of the models was evaluated and validated using the Area Under the Receiver Operating Characteristic curve (AUC). While all models showed a strong flood prediction capability (AUC > 0.95), the NBT model performed best (AUC = 0.98), suggesting that, among the models studied, the NBT model is a promising tool for the assessment of flood-prone areas and can allow for proper planning and management of flood hazards.

Từ khóa:

Flood susceptibility Machine Learning Multi-Criteria Decision-Making GIS China
Thông tin tác giả
Lý Hải Bằng

Lý Hải Bằng

Tiến sĩ

Lý lịch khoa học